If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-320=0
a = 1; b = 32; c = -320;
Δ = b2-4ac
Δ = 322-4·1·(-320)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-48}{2*1}=\frac{-80}{2} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+48}{2*1}=\frac{16}{2} =8 $
| -207-6=-15x+90 | | 10-(2x-7)=2-3x | | y=8-18 | | 35-x-(8)=0 | | 5+12x+13x+1=180 | | 34=2h-18h/9h | | X-6/3+x+3/5=35 | | 17-8d-8d=-31 | | j-3=7.01 | | |v+8|-7=2 | | 14x-2(6+7x)=2x+4 | | −12=6(−4+g) | | 34=2h-18/h | | -96=-8x | | (6x+8)=(7x-2) | | -14.66+12.3c=14.3c+8.54 | | 2(3n-)=28 | | 8s+5s+2=17 | | 5b+7b=48 | | 66=58+3/6m | | 24x-5+13x=180 | | 4y-4=y | | 9t=936 | | -1(-1-4x)=(1x+2)+6 | | 3+m/8=‒2 | | 13x+1+5+12=180 | | 2x+4(.25x-3)=12 | | 3=15-8x | | 7.4y-5.3=9.2y-2.6 | | 9.0x10=-15 | | 2(x+5)+12=30 | | 24x-5=13x |